北京

点击搜索

发布

好程序员大数据采集与处理

区域:
北京 > 海淀 > 清河
类别:
软件工程师培训
地址:
海淀区宝盛里天丰利商城三层
  1. 大数据处理之一:采集

  大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的 数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除 此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。

  在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户 来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间 进行负载均衡和分片的确是需要深入的思考和设计。

  2. 大数据处理之二:导入/预处理

  虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这 些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使 用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。

  导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。

  3. 大数据处理之三:统计/分析

  统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通 的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于 MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。

  统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。

  4. 大数据处理之四:挖掘

  与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数 据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于 统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并 且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。

  好程序员特训营自2014年开班至今,一直立志培养高薪,高能,高职的程序员人才,截至目前,好程序员学员就业均薪1万3以上,学员薪资高达到2万9千元。现开设Html5、JavaEE、大数据、Android等高端精品课程,40人小班教学保证高品质,坚持100%全程面授。

  好程序员特训营-从平凡到卓越
查看更多北京电脑/网络信息

免责声明:此信息系发布者(UID:438687)自行发布,本站是服务平台,仅提供信息存储空间服务,该信息内容的真实性及合法性由该发布者完全负责。

© lieju.com 联系我们