拉勾教育Go基础系列指定goroutine的执行顺序
Go channel系列:
• channel入门
• 为select设置超时时间
• nil channel用法示例
• 双层channel用法示例
• 指定goroutine的执行顺序
当关闭一个channel时,会使得这个channel变得可读。通过这个特性,可以实现一个goroutine执行顺序的技巧。拉勾IT课小编为大家分解
如果一个goroutine A依赖于另一个goroutine B,在goroutine A中首先通过读goroutine B来阻塞自己,直到goroutine B关闭自身之后,goroutine A才会继续运行。这样,goroutine B就先于goroutine A运行。
下面是一个指定goroutine执行顺序的示例,它保证的顺序是A()-->B()-->C()。
package main
import (
"fmt"
"time"
)
// A首先被a阻塞,A()结束后关闭b,使b可读
func A(a, b chan struct{}) {
<-a
fmt.Println("A()!")
time.Sleep(time.Second)
close(b)
}
// B首先被a阻塞,B()结束后关闭b,使b可读
func B(a, b chan struct{}) {
<-a
fmt.Println("B()!")
close(b)
}
// C首先被a阻塞
func C(a chan struct{}) {
<-a
fmt.Println("C()!")
}
func main() {
x := make(chan struct{})
y := make(chan struct{})
z := make(chan struct{})
go C(z)
go A(x, y)
go C(z)
go B(y, z)
go C(z)
// 关闭x,让x可读
close(x)
time.Sleep(3 * time.Second)
}
上面的示例中:A goroutine被x阻塞,B goroutine被y阻塞,C goroutine被z阻塞。C依赖的z由B关闭,B依赖的y由A关闭。
如此一来,当main goroutine中的x被关闭后,A()从阻塞中释放,继续执行,关闭y,然后B从阻塞中释放,继续执行,关闭z,C得以释放。由于z被关闭后,z仍然可读,所以多次执行C(z)不会出问题。
A()和B()不能多次执行,因为close()不能操作已被关闭的channel。
注意,上面的channel都是struct{}类型的,整个过程中,x、y、z这3个通道都没有传递数据,而是直接关闭来释放通道,让某些阻塞的goroutine继续执行下去。显然,这里的x、y、z的作用都是"信号通道",用传递消息
• channel入门
• 为select设置超时时间
• nil channel用法示例
• 双层channel用法示例
• 指定goroutine的执行顺序
当关闭一个channel时,会使得这个channel变得可读。通过这个特性,可以实现一个goroutine执行顺序的技巧。拉勾IT课小编为大家分解
如果一个goroutine A依赖于另一个goroutine B,在goroutine A中首先通过读goroutine B来阻塞自己,直到goroutine B关闭自身之后,goroutine A才会继续运行。这样,goroutine B就先于goroutine A运行。
下面是一个指定goroutine执行顺序的示例,它保证的顺序是A()-->B()-->C()。
package main
import (
"fmt"
"time"
)
// A首先被a阻塞,A()结束后关闭b,使b可读
func A(a, b chan struct{}) {
<-a
fmt.Println("A()!")
time.Sleep(time.Second)
close(b)
}
// B首先被a阻塞,B()结束后关闭b,使b可读
func B(a, b chan struct{}) {
<-a
fmt.Println("B()!")
close(b)
}
// C首先被a阻塞
func C(a chan struct{}) {
<-a
fmt.Println("C()!")
}
func main() {
x := make(chan struct{})
y := make(chan struct{})
z := make(chan struct{})
go C(z)
go A(x, y)
go C(z)
go B(y, z)
go C(z)
// 关闭x,让x可读
close(x)
time.Sleep(3 * time.Second)
}
上面的示例中:A goroutine被x阻塞,B goroutine被y阻塞,C goroutine被z阻塞。C依赖的z由B关闭,B依赖的y由A关闭。
如此一来,当main goroutine中的x被关闭后,A()从阻塞中释放,继续执行,关闭y,然后B从阻塞中释放,继续执行,关闭z,C得以释放。由于z被关闭后,z仍然可读,所以多次执行C(z)不会出问题。
A()和B()不能多次执行,因为close()不能操作已被关闭的channel。
注意,上面的channel都是struct{}类型的,整个过程中,x、y、z这3个通道都没有传递数据,而是直接关闭来释放通道,让某些阻塞的goroutine继续执行下去。显然,这里的x、y、z的作用都是"信号通道",用传递消息