101教育 幂函数图像及性质
高二是承上启下的重要阶段。高二的学习直接影响到一轮复习的效果。而数学的学习更是难点。下面是101教育小编为大家整理的高二数学期末复习:幂函数图像www.chi***/article/1126755.html及性质,欢迎参考学习!
性质:当α>0时,幂函数y=xα有下列性质:a、图像都经过点(1,1)(0,0);b、函数的图像在区间[0,+∞)上是增函数;c、在象限内,α>1时,导数值逐渐增大等。
1、幂函数的图像
2、幂函数的性质
一、正值性质
当α>0时,幂函数y=xα有下列性质:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是增函数;
c、在象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0;
二、负值性质
当α<0时,幂函数y=xα有下列性质:
a、图像都通过点(1,1);
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。
c、在象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
三、零值性质
当α=0时,幂函数y=xa有下列性质:
a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。
以上就是本次整理的全部内容了,想了解更多知识点请关注101教育。
性质:当α>0时,幂函数y=xα有下列性质:a、图像都经过点(1,1)(0,0);b、函数的图像在区间[0,+∞)上是增函数;c、在象限内,α>1时,导数值逐渐增大等。
1、幂函数的图像
2、幂函数的性质
一、正值性质
当α>0时,幂函数y=xα有下列性质:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是增函数;
c、在象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0;
二、负值性质
当α<0时,幂函数y=xα有下列性质:
a、图像都通过点(1,1);
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。
c、在象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
三、零值性质
当α=0时,幂函数y=xa有下列性质:
a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。
以上就是本次整理的全部内容了,想了解更多知识点请关注101教育。