META2032系统开发
智能合约事实上是由计算机代码构成開发+18I链上合约-259l开发系统3365的一段程序,其缔结过程是:步,参与缔约的双方或多方用户商定后将共同合意制定成一份智能合约;第二步,该智能合约通过区块链网络向全球各个区块链.
// Solving the Determinant
double Matrix::Det(void){
// If rows is equal to cols
assert(m_rows == m_cols);
return GetDet(data, m_rows);
}
// The definition of Resize function
void Matrix::Resize(Mat &mat, const un_int &r, const un_int &c){
// Resetting cols
mat.resize(r);
// Resetting rows
for(un_int i = 0;i < r;++i){ mat.resize(c); }}
// The definition of GetDet function
GetDet double Matrix::GetDet(const Mat &mat,const un_int &n){ double ans = 0;
// Solving the determinant
if(n == 1) {return mat[0][0]; }
else { Mat temp; temp.resize(n);
for(un_int i = 0;i < n;++i){ temp.resize(n); }
for(un_int i = 0;i < n;++i){ // Getting algebraic cofactor of first row,j+1 th col
un_int p = 0; for(un_int j = 0;j < n;++j){
if(j != 0){ un_int q = 0;
for(un_int k = 0;k < n;++k){
if(k != i){ temp[p][q] = mat[j][k]; ++q;
}
}
++p;
}
}
ans += pow(-1, i)*mat[0]*GetDet(temp, n - 1); }
return ans;
}
}
// The definition of GetCofactor function
double Matrix::GetCofactor(const un_int m, const un_int n){
Matrix temp(m_rows - 1, m_cols - 1, 0);
// Getting algebraic cofactor of m th row,n th col
for(un_int i = 0, k = 0, l = 0;i < m_rows;++i){
for(un_int j = 0;j < m_cols;++j){
if(i != m && j != n){
temp[k][l] = data[j]; ++l;
if(l == m_cols - 1){ l = 0; ++k;
}
}
}
}
const int sign = (((m + n + 2) & 1) == 0?1 : -1);
return sign * temp.Det();// Getting cofactor's determinant
}
// Solving the Determinant
double Matrix::Det(void){
// If rows is equal to cols
assert(m_rows == m_cols);
return GetDet(data, m_rows);
}
// The definition of Resize function
void Matrix::Resize(Mat &mat, const un_int &r, const un_int &c){
// Resetting cols
mat.resize(r);
// Resetting rows
for(un_int i = 0;i < r;++i){ mat.resize(c); }}
// The definition of GetDet function
GetDet double Matrix::GetDet(const Mat &mat,const un_int &n){ double ans = 0;
// Solving the determinant
if(n == 1) {return mat[0][0]; }
else { Mat temp; temp.resize(n);
for(un_int i = 0;i < n;++i){ temp.resize(n); }
for(un_int i = 0;i < n;++i){ // Getting algebraic cofactor of first row,j+1 th col
un_int p = 0; for(un_int j = 0;j < n;++j){
if(j != 0){ un_int q = 0;
for(un_int k = 0;k < n;++k){
if(k != i){ temp[p][q] = mat[j][k]; ++q;
}
}
++p;
}
}
ans += pow(-1, i)*mat[0]*GetDet(temp, n - 1); }
return ans;
}
}
// The definition of GetCofactor function
double Matrix::GetCofactor(const un_int m, const un_int n){
Matrix temp(m_rows - 1, m_cols - 1, 0);
// Getting algebraic cofactor of m th row,n th col
for(un_int i = 0, k = 0, l = 0;i < m_rows;++i){
for(un_int j = 0;j < m_cols;++j){
if(i != m && j != n){
temp[k][l] = data[j]; ++l;
if(l == m_cols - 1){ l = 0; ++k;
}
}
}
}
const int sign = (((m + n + 2) & 1) == 0?1 : -1);
return sign * temp.Det();// Getting cofactor's determinant
}