高中函数的解题思路
1 函数与方程思想
2 数形结合思想
解题类型:
①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。
②“由数化形” :就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。
③“数形转换” :就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。
3 分类讨论思想
常见的类型:
类型1:由数学概念引起的的讨论,如实数、有理数、、点(直线、圆)与圆的位置关系等概念的分类讨论;
类型2:由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;
类型3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;
类型4:由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。
类型5:由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。
4 转化与化归思想
常见的转化方法:
①直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题;
②换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题;
③数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径;
④等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的;
⑤特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题;
⑥构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题;
⑦坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径。
名思教育长期开设小学、中学、高中各科(语文、数学、英语、科学、化学、生物、物理、政治、历史、地理、技术) 一对一课外辅导!一对一课外辅导机构就在名思教育!详询钱老师 18057308453
2 数形结合思想
解题类型:
①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。
②“由数化形” :就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。
③“数形转换” :就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。
3 分类讨论思想
常见的类型:
类型1:由数学概念引起的的讨论,如实数、有理数、、点(直线、圆)与圆的位置关系等概念的分类讨论;
类型2:由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;
类型3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;
类型4:由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。
类型5:由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。
4 转化与化归思想
常见的转化方法:
①直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题;
②换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题;
③数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径;
④等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的;
⑤特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题;
⑥构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题;
⑦坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径。
名思教育长期开设小学、中学、高中各科(语文、数学、英语、科学、化学、生物、物理、政治、历史、地理、技术) 一对一课外辅导!一对一课外辅导机构就在名思教育!详询钱老师 18057308453