溧水考研数学培训机构_线性代数怎样备考
马上寒假,不知道考严的各位学子复习的怎么样了,是否已经成竹在胸? 考研数学你复习到哪一步了?在这里,上元君提醒大家:线性代数在考研数学中占22%,虽然不及高数,但如果复习不好,将会影响整个考试成绩,所以,大家还是要足够重视才行。
、 行列式
行列式这部分主要是利用性质熟练准确的计算出行列式的值,没有太多内容,行列式的重点是计算,矩阵。
矩阵是基础,关联到整个线代。矩阵的运算很重要,尤其不要做非法的运算(因为大家习惯了数的运算,在做矩阵运算的时候容易受到数的影响,所以这个地方大家要把它搞清楚)。矩阵运算里一个很重要的就是初等变换。我们在解方程组,求特征向量都离不开这部分内容。这是我们矩阵部分的重点。
第二、 向量
向量这部分是逻辑性非常强的部分,主要包括证明(或判别)向量组的线性相关(无关),线性表出等问题,此问题的关键在于深刻理解线性相关 (无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。
第三、 特征值、特征向量
要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程∣λE-A∣=0及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用。有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。实对称矩阵的相似对角化及正交变换相似于对角阵。反过来,可由A的特征值,特征向量来确定A的参数或确定A,如果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A.
第四、 二次型
二次型的内容是针对于只考数学一、数学三的同学。二次型只要把其矩阵对应写出来,其问题都可以转化为对称矩阵的对角型来讨论。所以这部分的内容又联系上前面的内容了。把前面的基础打牢,后面的知识自然就掌握了。
以往线性代数的题目,都是多个知识点的综合。除了考察学生的运算能力、抽象概括能力、逻辑思维能力以外,重点考察合运用所学知识解决实际问题的能力。因此,我们应该把基础打好之后,再通过多做题来锻炼自己的综合思维,通过做一些综合性较强的题目,做完之后多总结,达到对概念、性质内涵的理解和应用方法的掌握。
希望2022考研数学中,线性代数你能够把握自如,为整个考研数学成绩锦上添花!
、 行列式
行列式这部分主要是利用性质熟练准确的计算出行列式的值,没有太多内容,行列式的重点是计算,矩阵。
矩阵是基础,关联到整个线代。矩阵的运算很重要,尤其不要做非法的运算(因为大家习惯了数的运算,在做矩阵运算的时候容易受到数的影响,所以这个地方大家要把它搞清楚)。矩阵运算里一个很重要的就是初等变换。我们在解方程组,求特征向量都离不开这部分内容。这是我们矩阵部分的重点。
第二、 向量
向量这部分是逻辑性非常强的部分,主要包括证明(或判别)向量组的线性相关(无关),线性表出等问题,此问题的关键在于深刻理解线性相关 (无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。
第三、 特征值、特征向量
要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程∣λE-A∣=0及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用。有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。实对称矩阵的相似对角化及正交变换相似于对角阵。反过来,可由A的特征值,特征向量来确定A的参数或确定A,如果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A.
第四、 二次型
二次型的内容是针对于只考数学一、数学三的同学。二次型只要把其矩阵对应写出来,其问题都可以转化为对称矩阵的对角型来讨论。所以这部分的内容又联系上前面的内容了。把前面的基础打牢,后面的知识自然就掌握了。
以往线性代数的题目,都是多个知识点的综合。除了考察学生的运算能力、抽象概括能力、逻辑思维能力以外,重点考察合运用所学知识解决实际问题的能力。因此,我们应该把基础打好之后,再通过多做题来锻炼自己的综合思维,通过做一些综合性较强的题目,做完之后多总结,达到对概念、性质内涵的理解和应用方法的掌握。
希望2022考研数学中,线性代数你能够把握自如,为整个考研数学成绩锦上添花!