奉贤补习班,新解析数学的“三功”
功:审读功
审题是基础也是必要的功法,只有审好题才能答好题,审好题是解好题的前提和关键所在。因此,要提高解题能力,就必须从学会审题开始。
如何提高自己的审题能力呢?
1、善用图纸,培养审题的灵活性。
当题目的信息被感知时,我们可以将其中一部分信息用简短的形式记录在草稿纸上。示意图是记录信息的一种极好的方式,它能整体地、动态地反映事物的运动变化过程。睹图凝思实际上是视觉化思维参与了解题过程,问题就可以解决得更快,失误也更少。
2、充分挖掘,培养审题的深刻性。
有些题目的部分条件并不明确给出,而是隐含在文字叙述之中。把隐含条件挖掘出米,常常是解题的关键所在,对题目隐含条件的挖掘,都要仔细思考除了明确给出的条件以外,是否还隐含着更多的条件,这样才能准确地理解题意。
3、提炼重点,培养审题的准确性。
在审题时,同学们要透过复杂的题干部分,找出重点,理解题意,特别要注意题目中的关键词语。所谓关键词语,就是是题目涉及的数学知识,及具体数据,已知条件等,忽略了它们,往往使解题过程变得盲目,思维陷入困境。
第二功:图功。
高中数学中,很多同学对立体几何和解析几何是又愁又怕,“几何,几何,尖尖角角,又不好看,又不好学”。其实几何是具有形象性的一门科学,只要思想上重视,又在学习方法上下功夫,是完全可以学好的。
那么我们如何练好图功呢?
1、训练直观思维。
即根据书上的图形,动手动脑用硬纸板、橡皮泥等做些图形,详细进行观察分析,既可帮助我们加深对书本定理、性质的理解,进行直观思维,又可逐步培养观察力。
2、熟悉解题的常见着眼点,常用辅助线作法。
把大问题细化成各个小问题,从而各个击破,解决问题。在我们对一个问题还没有切实的解决方法时,要善于捕捉可能会帮助你解决问题的着眼点。辅助线是非常好用的解题法宝,遇到题目,心里必须清楚都有哪些辅助线可作,然后再具体问题具体分析。
3、训练想像力。
有的问题既要凭借图形,又要进行抽象思维。同学们不但要学会看图,而且要学会画图,通过看图和画培养自己的空间想象能力比如,几何中的“点”没有大小,只有位置。现实生活中的点和实际画出来的点就有大小。所以说,几何中的“点”只存在于大脑思维中。
4、明确几何语言。
几何语言又分为文字语言和符号语言,几何语言总是和图形相联系。很多同学能把问题想清楚,但是一落在纸面上,不成话。需要记的一句话:几何语言讲究言之有据,言之有理。也就是说没有根据的话不要说,不符合定理的话不要说。
5、立足课本,夯实基础。
对基础知识的掌握一定要牢固,在这个基础上我们才能谈如何学好的问题。课本有三大方面我们一定要留意,一个是几何的概念,包括定义——对概念的判断、图形——对定义的直观形象描绘;一个是例题,课本的例题都比较简单,我们连例题都不弄清楚,怎么面对复杂多变的考题;再有一个是课后习题,大部分是比较典型的,考试常出现的,不能不做总结。
第三功:算功。
运算能力是高中生必备的基本数学素养,也是高中生必须具备的基础又是应用广的一种能力。不少学生在学习中眼高手低,一看题目会做、一想出解法思路就“Pass”,导致“思路会,算不对”或“会而不对,对而不全”。事实上看懂了甚至想明白了并不意味着考试时就十拿九稳了。
1、准确理解和牢固掌握各种运算所需的概念、性质、公式、法则和一些常用数据。
概念模糊,公式、法则含混,必定影响运算的准确性。为了提高运算的速度,收集、归纳、积累经验,形成熟练技巧,以提高运算的简捷性和迅速性。
2、加强运算练习。
为了有效的提高学生的运算能力就必须加强练习,练习要有目的性、系统性、典型性。通过一题多变、一题多改、一题多解、一法多用,培养运算的熟练性、准确性、灵活性。
3、提高运算中的推理能力。
数学运算的实质是根据运算定义及性质,从已知数据及算式推导出结果的过程,也是一种推理的过程。运算的正确性与否取决于推理是否正确,如果推理不正确,则运算就出错。
4、养成验算的习惯,掌握验算方法。
做完题目应该对运算的过程和结果进行检验,以便及时纠正运算过程或结果中出现的错误,并掌握验算方法。检验的方法通常有:还原法、代值法、估值法、逆运算等。
审题是基础也是必要的功法,只有审好题才能答好题,审好题是解好题的前提和关键所在。因此,要提高解题能力,就必须从学会审题开始。
如何提高自己的审题能力呢?
1、善用图纸,培养审题的灵活性。
当题目的信息被感知时,我们可以将其中一部分信息用简短的形式记录在草稿纸上。示意图是记录信息的一种极好的方式,它能整体地、动态地反映事物的运动变化过程。睹图凝思实际上是视觉化思维参与了解题过程,问题就可以解决得更快,失误也更少。
2、充分挖掘,培养审题的深刻性。
有些题目的部分条件并不明确给出,而是隐含在文字叙述之中。把隐含条件挖掘出米,常常是解题的关键所在,对题目隐含条件的挖掘,都要仔细思考除了明确给出的条件以外,是否还隐含着更多的条件,这样才能准确地理解题意。
3、提炼重点,培养审题的准确性。
在审题时,同学们要透过复杂的题干部分,找出重点,理解题意,特别要注意题目中的关键词语。所谓关键词语,就是是题目涉及的数学知识,及具体数据,已知条件等,忽略了它们,往往使解题过程变得盲目,思维陷入困境。
第二功:图功。
高中数学中,很多同学对立体几何和解析几何是又愁又怕,“几何,几何,尖尖角角,又不好看,又不好学”。其实几何是具有形象性的一门科学,只要思想上重视,又在学习方法上下功夫,是完全可以学好的。
那么我们如何练好图功呢?
1、训练直观思维。
即根据书上的图形,动手动脑用硬纸板、橡皮泥等做些图形,详细进行观察分析,既可帮助我们加深对书本定理、性质的理解,进行直观思维,又可逐步培养观察力。
2、熟悉解题的常见着眼点,常用辅助线作法。
把大问题细化成各个小问题,从而各个击破,解决问题。在我们对一个问题还没有切实的解决方法时,要善于捕捉可能会帮助你解决问题的着眼点。辅助线是非常好用的解题法宝,遇到题目,心里必须清楚都有哪些辅助线可作,然后再具体问题具体分析。
3、训练想像力。
有的问题既要凭借图形,又要进行抽象思维。同学们不但要学会看图,而且要学会画图,通过看图和画培养自己的空间想象能力比如,几何中的“点”没有大小,只有位置。现实生活中的点和实际画出来的点就有大小。所以说,几何中的“点”只存在于大脑思维中。
4、明确几何语言。
几何语言又分为文字语言和符号语言,几何语言总是和图形相联系。很多同学能把问题想清楚,但是一落在纸面上,不成话。需要记的一句话:几何语言讲究言之有据,言之有理。也就是说没有根据的话不要说,不符合定理的话不要说。
5、立足课本,夯实基础。
对基础知识的掌握一定要牢固,在这个基础上我们才能谈如何学好的问题。课本有三大方面我们一定要留意,一个是几何的概念,包括定义——对概念的判断、图形——对定义的直观形象描绘;一个是例题,课本的例题都比较简单,我们连例题都不弄清楚,怎么面对复杂多变的考题;再有一个是课后习题,大部分是比较典型的,考试常出现的,不能不做总结。
第三功:算功。
运算能力是高中生必备的基本数学素养,也是高中生必须具备的基础又是应用广的一种能力。不少学生在学习中眼高手低,一看题目会做、一想出解法思路就“Pass”,导致“思路会,算不对”或“会而不对,对而不全”。事实上看懂了甚至想明白了并不意味着考试时就十拿九稳了。
1、准确理解和牢固掌握各种运算所需的概念、性质、公式、法则和一些常用数据。
概念模糊,公式、法则含混,必定影响运算的准确性。为了提高运算的速度,收集、归纳、积累经验,形成熟练技巧,以提高运算的简捷性和迅速性。
2、加强运算练习。
为了有效的提高学生的运算能力就必须加强练习,练习要有目的性、系统性、典型性。通过一题多变、一题多改、一题多解、一法多用,培养运算的熟练性、准确性、灵活性。
3、提高运算中的推理能力。
数学运算的实质是根据运算定义及性质,从已知数据及算式推导出结果的过程,也是一种推理的过程。运算的正确性与否取决于推理是否正确,如果推理不正确,则运算就出错。
4、养成验算的习惯,掌握验算方法。
做完题目应该对运算的过程和结果进行检验,以便及时纠正运算过程或结果中出现的错误,并掌握验算方法。检验的方法通常有:还原法、代值法、估值法、逆运算等。