永磁变频空压机可靠性
永磁螺杆机 (http://www.baiji***/ )与电机的结构原理是将螺杆机头的阳转子③的轴伸出机头跟电机的转子②形成同轴连接。然后电机的定子与机壳固定在螺杆机头的壳体上,形成电机与机头的一体化。通过转子上的自带风叶经电机绕组与机壳的通风槽冷却定子。这种结构在很多机电设备场合是一种创新和发展的趋势,比如空调压缩机、电梯曳引机、电动葫芦等,所以受螺杆空压机与电机的结构原理是将螺杆机头的阳转子③的轴伸出机头跟电机的转子②形成同轴连接。然后电机的定子与机壳固定在螺杆机头的壳体上,形成电机与机头的一体化。通过转子上的自带风叶经电机绕组与机壳的通风槽冷却定子。这种结构在很多机电设备场合是一种创新和发展的趋势,比如空调压缩机、电梯曳引机、电动葫芦等,所以受到很多用户的好评与青睐。空压机螺杆一体机由于体积小、结构简单、系统效率高、价格较低等优点在市场上开始盛行。但从电机专业角度看此设计弊端很多,潜在风险较大。主要问题如下:
●电机温度过高:由于油冷机头特点工作温度要到达65~80度之间,所以电机与机头直联轴的温度传递给电机永磁转子,机体温度传递给电机机壳,这样实际电机工作环境温度达到了65度左右。一般电机设计合理温升高为80K,那么高电机绕组温度可能在145度,按38UH的磁钢退磁(开发式可逆退磁)实验证明,80度时退磁率为2%;100度5%;120度为7%;150度为12%。说明温度越高磁通越低,而磁钢的磁通量与电机效率相关,也就是电机温度越率越低,反电动势越小,变频器给定电压越低。电机电流越大,绕组温升越高电阻越大,定子铜损耗越大。效率再次下降,所以一体机在满压大流量时实际效率达不到设计值。举具体例说明一体机效率的下降:
1、假设一体机工作环境温度为70度,分体机电机环境温度为30度,并且假设两种情况下电机实际运行时的温升均为50度,电机有相同的电磁设计方案,电机的负载相同。一体机的工作温度为120度,分体机为80度。则前者工作时的电阻将比后者高出约12.7%,铜损耗亦高出约12.7%;
2、分体机的工作温度为假设电机按直轴电流为零的控制方式;120度与80度时磁钢退磁率分别为7%和2%。为此,电机拖动相同的负载时前者的定子电流将比后者高出约5.38%,为此电机的铜损耗将高出11.0%
●电机温度过高:由于油冷机头特点工作温度要到达65~80度之间,所以电机与机头直联轴的温度传递给电机永磁转子,机体温度传递给电机机壳,这样实际电机工作环境温度达到了65度左右。一般电机设计合理温升高为80K,那么高电机绕组温度可能在145度,按38UH的磁钢退磁(开发式可逆退磁)实验证明,80度时退磁率为2%;100度5%;120度为7%;150度为12%。说明温度越高磁通越低,而磁钢的磁通量与电机效率相关,也就是电机温度越率越低,反电动势越小,变频器给定电压越低。电机电流越大,绕组温升越高电阻越大,定子铜损耗越大。效率再次下降,所以一体机在满压大流量时实际效率达不到设计值。举具体例说明一体机效率的下降:
1、假设一体机工作环境温度为70度,分体机电机环境温度为30度,并且假设两种情况下电机实际运行时的温升均为50度,电机有相同的电磁设计方案,电机的负载相同。一体机的工作温度为120度,分体机为80度。则前者工作时的电阻将比后者高出约12.7%,铜损耗亦高出约12.7%;
2、分体机的工作温度为假设电机按直轴电流为零的控制方式;120度与80度时磁钢退磁率分别为7%和2%。为此,电机拖动相同的负载时前者的定子电流将比后者高出约5.38%,为此电机的铜损耗将高出11.0%