行测技巧之数学运算综合题目答题技巧
上海国企招聘考试网为大家讲解国企行测技巧:数学运算综合题目答题技巧,希望可以帮助各位考生顺利通过上海国企招聘考试。还为大家提供上海国企招聘信息,上海国企考试试题, 上海国企招聘报名入口等内容,供大家参考学习。
行测考试中,知识点考察错综复杂,而对于数量关系的考察难度相对较大,下面就数学运算的考点、考题形式等进行一一讲解。
一、牛吃草问题
例题:一水库原有一定的水量,河水每天均匀入库,5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干。若要求6天抽干,需要()台同样的抽水机。
A.8 B.10 C.12 D.14
【中公解析】答案:C。牛吃草原型公式是原有草量=(牛的头数-草匀速生长的速度)×时间,在这里水库的一定量得水代表原有草量,抽水机的数量代表牛的头数,抽水机每台的速度代表草匀速生长的速度,所以设草匀速生长的速度为X,则(5-x)×20=(6-x)×15=(y-x)×6,解得x=2,y=12,选择C选项。
例题:有一片青草每天生长的速度相同,已知这片青草可供15头牛吃20天,或者供76只羊吃12天,如果一头牛的吃草量等于4只羊的吃草量,那么8头牛与64只羊一起吃,可以吃多少天?
A.2 B.6 C.8 D.10
【中公解析】答案:C。题目既存在牛也存在羊,把牛转换成羊进行计算,假设每只羊每天的吃草量为1,则牛的为4,所以(15×4-X)×20=(76-X)×12=(32+64-x)×T,解得X=36,T=8,所以选择C选项。
二、利润问题
例题:同一种品牌的电冰箱,甲超市的进价为1760元,比乙超市高10%,如果甲、乙两超市按相同的价格出售,则乙超市利润率比甲超市高15%。那么甲、乙两超市的售价为()元。
A.2360 B.2640 C.2680 D.2720
【中公解析】答案:B。找到题干等量关系列方程,甲乙超市售价相同,假设甲超市利润率为X,则有1600×(1+x%+15%)=1760×(1+x%)解得X=50%,所以售价为1760×(1+50%)=2640,所以选择B选项。
例题:某商店进了100件同样的衣服,按100%的利润率定价,卖了一段时间后打八折销售,卖掉剩下衣服的一半时为快速清仓,在八折基础上再打五折,售完所有衣服,已知这批衣服的终利润率为52%,则未打折时共卖了多少件衣服?
A.30 B.35 C.40 D.60
【中公解析】答案:C。题干中设计两个基本量,分别是成本和数量,假设成本=1,售价则为2,数量=X,总售价=100×1×(1+52%)=152,根据等量关系列方程则是2x+0.5(100-X)×2×80%+0.5(100-X)×2×80%×50%=152解得X=40,所以选择C选项。
行测考试中,知识点考察错综复杂,而对于数量关系的考察难度相对较大,下面就数学运算的考点、考题形式等进行一一讲解。
一、牛吃草问题
例题:一水库原有一定的水量,河水每天均匀入库,5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干。若要求6天抽干,需要()台同样的抽水机。
A.8 B.10 C.12 D.14
【中公解析】答案:C。牛吃草原型公式是原有草量=(牛的头数-草匀速生长的速度)×时间,在这里水库的一定量得水代表原有草量,抽水机的数量代表牛的头数,抽水机每台的速度代表草匀速生长的速度,所以设草匀速生长的速度为X,则(5-x)×20=(6-x)×15=(y-x)×6,解得x=2,y=12,选择C选项。
例题:有一片青草每天生长的速度相同,已知这片青草可供15头牛吃20天,或者供76只羊吃12天,如果一头牛的吃草量等于4只羊的吃草量,那么8头牛与64只羊一起吃,可以吃多少天?
A.2 B.6 C.8 D.10
【中公解析】答案:C。题目既存在牛也存在羊,把牛转换成羊进行计算,假设每只羊每天的吃草量为1,则牛的为4,所以(15×4-X)×20=(76-X)×12=(32+64-x)×T,解得X=36,T=8,所以选择C选项。
二、利润问题
例题:同一种品牌的电冰箱,甲超市的进价为1760元,比乙超市高10%,如果甲、乙两超市按相同的价格出售,则乙超市利润率比甲超市高15%。那么甲、乙两超市的售价为()元。
A.2360 B.2640 C.2680 D.2720
【中公解析】答案:B。找到题干等量关系列方程,甲乙超市售价相同,假设甲超市利润率为X,则有1600×(1+x%+15%)=1760×(1+x%)解得X=50%,所以售价为1760×(1+50%)=2640,所以选择B选项。
例题:某商店进了100件同样的衣服,按100%的利润率定价,卖了一段时间后打八折销售,卖掉剩下衣服的一半时为快速清仓,在八折基础上再打五折,售完所有衣服,已知这批衣服的终利润率为52%,则未打折时共卖了多少件衣服?
A.30 B.35 C.40 D.60
【中公解析】答案:C。题干中设计两个基本量,分别是成本和数量,假设成本=1,售价则为2,数量=X,总售价=100×1×(1+52%)=152,根据等量关系列方程则是2x+0.5(100-X)×2×80%+0.5(100-X)×2×80%×50%=152解得X=40,所以选择C选项。