石家庄

点击搜索

发布

军考数学基础知识点归纳

区域:
石家庄 > 桥西 > 中山
类别:
高中辅导班
地址:
石家庄市桥西区中山西路699号
第六部分 圆锥曲线

1.定义:⑴椭圆: ;

⑵双曲线: ;⑶抛物线:略

2.结论

⑴焦半径:①椭圆: (e为离心率); (左“+”右“-”);

②抛物线:

⑵弦长公式:注:(Ⅰ)焦点弦长:①椭圆: ;②抛物线: =x1+x2+p= ;(Ⅱ)通径(短弦):①椭圆、双曲线: ;②抛物线:2p。

⑶过两点的椭圆、双曲线标准方程可设为: ( 同时大于0时表示椭圆, 时表示双曲线);

⑷椭圆中的结论:

①内接矩形面积 :2ab;

②P,Q为椭圆上任意两点,且OP 0Q,则 ;

③椭圆焦点三角形:<Ⅰ>. ,( );<Ⅱ>.点 是 内心, 交 于点 ,则 ;

④当点 与椭圆短轴顶点重合时 ;

⑸双曲线中的结论:

①双曲线 (a>0,b>0)的渐近线: ;

②共渐进线 的双曲线标准方程为 为参数, ≠0);

③双曲线焦点三角形:<Ⅰ>. ,( );<Ⅱ>.P是双曲线 - =1(a>0,b>0)的左(右)支上一点,F1、F2分别为左、右焦点,则△PF1F2的内切圆的圆心横坐标为 ;

④双曲线为等轴双曲线 渐近线为 渐近线互相垂直;

(6)抛物线中的结论:

①抛物线y2=2px(p>0)的焦点弦AB性质:<Ⅰ>. x1x2= ;y1y2=-p2;

<Ⅱ>. ;<Ⅲ>.以AB为直径的圆与准线相切;<Ⅳ>.以AF(或BF)为直径的圆与 轴相切;<Ⅴ>. 。

②抛物线y2=2px(p>0)内结直角三角形OAB的性质:

<Ⅰ>. ; <Ⅱ>. 恒过定点 ;

<Ⅲ>. 中点轨迹方程: ;<Ⅳ>. ,则 轨迹方程为: ;<Ⅴ>. 。

③抛物线y2=2px(p>0),对称轴上一定点 ,则:

<Ⅰ>.当 时,顶点到点A距离小,小值为 ;<Ⅱ>.当 时,抛物线上有关于 轴对称的两点到点A距离小,小值为 。

3.直线与圆锥曲线问题解法:

⑴直接法(通法):联立直线与圆锥曲线方程,构造一元二次方程求解。

注意以下问题:

①联立的关于“ ”还是关于“ ”的一元二次方程?

②直线斜率不存在时考虑了吗?

③判别式验证了吗?

⑵设而不求(代点相减法):--------处理弦中点问题

步骤如下:①设点A(x1,y1)、B(x2,y2);②作差得 ;③解决问题。

冠明军考学校之所以在军考教育中占有领先地位,是因为冠明真正做到了“让更多的战士分享高品质教育”,让更多的战士实现自己心中的军校梦!

微信公众号:冠明军考

军考辅导微信:gmjunkao

军考资料微信:junkaoziiao

冠明军考地址:石家庄市桥西区中山西路699号
查看更多石家庄中小学辅导班信息

免责声明:此信息系发布者(UID:216737)自行发布,本站是服务平台,仅提供信息存储空间服务,该信息内容的真实性及合法性由该发布者完全负责。

© lieju.com 联系我们