抓住初高中内容的联系突破教学难点
高一教材中有许多内容都是与初中内容有密切联系的,如果能抓住它们的内在联系,进行对比分析、理解,那么就会让学生学习起来感到轻松、自然、扫除学习障碍,如对函数概念的理解,高中学生普遍感到困难,一个重要的原因就是类比初高中两种叙述的含义不够,造成了学生理解上的难度,事实上,在初中定义:“设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有的值与它对应,那么就说x是自变量,y是x的函数”中.我们完全可以找出高中函数定义中的 “集合A、集合B和对应法则f”.“在一个变化过程中x的每一个值”就构成集合A(函数的定义域).“与每一个x对应的y值”就构成函数的值域C
B(在映射中并没有要求B中的元素都有原象).“对于x的每一个值,y都有的值与它对应”就是说明存在着一个对应法则f.这样类比,就把初高中两种叙述方式联系起来了,让学生感到高中定义就是从初中定义中过渡过来的,而且更广泛,但其实质没有变,都是刻划一种对应关系(多对一,一对一).然后再从学生熟悉的一次函数、反比例函数、二次函数中去找出相应的集合A、集合B和对应法则f.让学生进一步加深理解在集合映射观点下的函数定义.