数学学习方法来名思
数列应用问题
1.数列应用问题的教学已成为中学数学教学与研究的一个重要内容,解答数学应用问题的核心是建立数学模型,有关平均增长率、利率(复利)以及等值增减等实际问题,需利用数列知识建立数学模型.
2.建立数学模型的一般方法步骤.
①认真审题,准确理解题意,达到如下要求:
⑴明确问题属于哪类应用问题;
⑵弄清题目中的主要已知事项;
⑶明确所求的结论是什么.
②抓住数量关系,联想数学知识和数学方法,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子表达.
③将实际问题抽象为数学问题,将已知与所求联系起来,据题意列出满足题意的数学关系式(如函数关系、方程、不等式).
规律方法指导
1.由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想;
2.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等.
3.加强数列知识与函数、不等式、方程、对数、立体几何、三角等内容的综合.解决这些问题要注意:
(1)通过知识间的相互转化,更好地掌握数学中的转化思想;
(2)通过解数列与其他知识的综合问题,培养分析问题和解决问题的综合能力.
1.数列应用问题的教学已成为中学数学教学与研究的一个重要内容,解答数学应用问题的核心是建立数学模型,有关平均增长率、利率(复利)以及等值增减等实际问题,需利用数列知识建立数学模型.
2.建立数学模型的一般方法步骤.
①认真审题,准确理解题意,达到如下要求:
⑴明确问题属于哪类应用问题;
⑵弄清题目中的主要已知事项;
⑶明确所求的结论是什么.
②抓住数量关系,联想数学知识和数学方法,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子表达.
③将实际问题抽象为数学问题,将已知与所求联系起来,据题意列出满足题意的数学关系式(如函数关系、方程、不等式).
规律方法指导
1.由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想;
2.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等.
3.加强数列知识与函数、不等式、方程、对数、立体几何、三角等内容的综合.解决这些问题要注意:
(1)通过知识间的相互转化,更好地掌握数学中的转化思想;
(2)通过解数列与其他知识的综合问题,培养分析问题和解决问题的综合能力.