数字光端机和模拟视频光端机有何不同
说到模拟视频光端机与数字光端机的不同之处,在这里飞畅科技的小编要介绍六点不一样的地方来详细讲解模拟视频光端机与数字光端机的不同。模拟视频光端机与数字光端机究竟有何区别,这也是众多用户所关心的确问题,本文从以下几个方面进行如下论述:
模拟视频光端机与数字光端机的不同
1、 光纤上传输的信号方式不一样 顾名思义,模拟光端机上光头发射的光信号是模拟光调制信号,它随输入的模拟载波信号的幅度、频率、相位变化引起光信号幅度、频率、相位变化而分别称为调幅、调频、调相光端机。而数字光端机上光头发射的光信号是数字信号即0或1对应光信号强、弱两种状态,不同的0和1组合代表不同幅度的视频、音频、数据信号。
2、 模拟信号传输输入和输出处理方式不一样 无论模拟、数字光端机,对输入的基带的视频、音频、数据信号都必须进行处理。对于模拟调幅光端机,处理方式是将视频、音频、数据的幅度对一高频载波信号进行调制,使高频载波信号的幅度随视频、音频、数据的幅度变化而变化;而数字式光端机对输入的基带的视频、音频、数据进行高分辨率的模拟-数字转换,如1Vp-p幅度范围的幅度信号利用12bits的数字信号来表示,1V等分成4096,因此模数转换后引起的大电压幅度误差为1/4096V(约2.5mV),此误差电压称为量化误差电压,各种幅度的电压数值从0V、1/4096V、2/4096V…大1V分别对应的数字编码为000000000000、000000000001、000000000010…111111111111。数字编码信号直接控制光头发射的光信号的强、弱两种状态(对应0或1),接收光端机再将数字编码进行数字-模拟转换,恢复成原始的基带的视频、音频、数据信号。
3、 处理方式的不同,引起的视频、音频、数据信号信号失真、变畸变、干扰不同 模拟光端机由于要进行调幅、调频、调相,所以模拟信号的幅度的变化与载波信号因调制而引起的幅度、频率、相位的变化是否为一一对应的线形关系成为拟光端机质量好坏的关键,到目前为止,很难做到真正线性调制,非线形必然引起信号失真;同时调制好的载波信号还要调制光信号,光信号的非线性也是一个非常重要的因素,众所周知,光器件的非线性与环境温度变化、工作电压的稳定性、光发射功率有很大的影响,因此光器件在生产时需进行7-10天的热循环老化等等工艺筛选、老化、测试也只能做到将这种变换控制在一定的范围;光信号在光纤中长距离传输,会引起光信号的功率衰减,传输频率漂移、相位失真,光信号色散效应同样也会引起光信号畸变;光信号到达接收端,接收光器件仍然要引起非线性失真,由光电转换后的模拟信号进入解调,解调与调制一样会产生非线性畸变。所以综合模拟光端机,从输入信号调制-电光转换-光输出-光电转换-解调这五个过程,都会引起非线形失真,而这些信号畸变失真是固有的,所以也必然是不可的,因此模拟光端机传输视频图象、音频质量、数据的效果很难达到很满意的效果。数字式光端机仅只有模数转换的量化误差(如1V视频信号12bits时仅为2.5mv),不足以引起信号畸变。
4、 多路信号同传引起的交调失真 在现场监控应用中,用户可能有许多各种信号,如视频图像、音频、数据、以太网、电话或其它用户自定义的信号,每种信号分别用一对光端机来传输,必然价格昂贵,所以为了提高光纤的利用效率,降低成本,必须的各种信号在光端机进行复用,以便在一对或一根光纤上传输。对调频、调幅、调相光端机来讲,传输10/100M以太网信号或多路电话等高速信号是难以做到的,将多路视频或音频信号混合调频、调幅、调相在某一载波上必然会引起各种镜像、交调干扰。所以目前市场上不乏很多着名国外品牌的调频、调幅、调相光端机多路视频、音频、数据同传时经常出现相互干扰的现象,这些不稳定的现象都是模拟调制技术长期以来一直所固有且难以解决的问题和缺点。所以模拟光端机传输信号容量有限,一般不会超过4路信号同传。而数字光端机传输的是数字信号,很容易进行大容量复用并且不会出现相互干扰。
5、 稳定性不同 模拟调制光端机由于采取载波调制方式,载波及光头很容易受环境温度影响。出现传输质量随环境变化而变化的缺点。正因为这种缺点,对一些大型、重要工程来讲,模拟光端机的维护成了很令人头疼的问题,由此也给很多工程承包商或业主带来了很大不满。所以对一些重要的工程选用数字光端机是一种明智的选择。
6、 价格有所不同 由于体系结构不一样,模拟光端机与数字光端机的价格略有不同,一般来说,单路视频、音频、数据数字光端机较单路模拟光端机价格稍高,四路以上视频、音频、数据数字光端机相反比模拟光端机便宜得多,而传输后的视频效果远高于模拟产品。所以,数字光端机的性价比要高于模拟光端机。
好了,以上内容就是飞畅科技关于数字光端机和模拟视频光端机不同点的相关详细介绍,希望能对你有所帮助!飞畅科技,专业做光端机、光纤收发器、工业交换机、协议转换器的厂家,自主研发品牌,欢迎前来了解、交流。咨询热线:0571-8700-7140,400-0505-571。
了解更多请浏览飞畅科技:http://www.futu***.cn
模拟视频光端机与数字光端机的不同
1、 光纤上传输的信号方式不一样 顾名思义,模拟光端机上光头发射的光信号是模拟光调制信号,它随输入的模拟载波信号的幅度、频率、相位变化引起光信号幅度、频率、相位变化而分别称为调幅、调频、调相光端机。而数字光端机上光头发射的光信号是数字信号即0或1对应光信号强、弱两种状态,不同的0和1组合代表不同幅度的视频、音频、数据信号。
2、 模拟信号传输输入和输出处理方式不一样 无论模拟、数字光端机,对输入的基带的视频、音频、数据信号都必须进行处理。对于模拟调幅光端机,处理方式是将视频、音频、数据的幅度对一高频载波信号进行调制,使高频载波信号的幅度随视频、音频、数据的幅度变化而变化;而数字式光端机对输入的基带的视频、音频、数据进行高分辨率的模拟-数字转换,如1Vp-p幅度范围的幅度信号利用12bits的数字信号来表示,1V等分成4096,因此模数转换后引起的大电压幅度误差为1/4096V(约2.5mV),此误差电压称为量化误差电压,各种幅度的电压数值从0V、1/4096V、2/4096V…大1V分别对应的数字编码为000000000000、000000000001、000000000010…111111111111。数字编码信号直接控制光头发射的光信号的强、弱两种状态(对应0或1),接收光端机再将数字编码进行数字-模拟转换,恢复成原始的基带的视频、音频、数据信号。
3、 处理方式的不同,引起的视频、音频、数据信号信号失真、变畸变、干扰不同 模拟光端机由于要进行调幅、调频、调相,所以模拟信号的幅度的变化与载波信号因调制而引起的幅度、频率、相位的变化是否为一一对应的线形关系成为拟光端机质量好坏的关键,到目前为止,很难做到真正线性调制,非线形必然引起信号失真;同时调制好的载波信号还要调制光信号,光信号的非线性也是一个非常重要的因素,众所周知,光器件的非线性与环境温度变化、工作电压的稳定性、光发射功率有很大的影响,因此光器件在生产时需进行7-10天的热循环老化等等工艺筛选、老化、测试也只能做到将这种变换控制在一定的范围;光信号在光纤中长距离传输,会引起光信号的功率衰减,传输频率漂移、相位失真,光信号色散效应同样也会引起光信号畸变;光信号到达接收端,接收光器件仍然要引起非线性失真,由光电转换后的模拟信号进入解调,解调与调制一样会产生非线性畸变。所以综合模拟光端机,从输入信号调制-电光转换-光输出-光电转换-解调这五个过程,都会引起非线形失真,而这些信号畸变失真是固有的,所以也必然是不可的,因此模拟光端机传输视频图象、音频质量、数据的效果很难达到很满意的效果。数字式光端机仅只有模数转换的量化误差(如1V视频信号12bits时仅为2.5mv),不足以引起信号畸变。
4、 多路信号同传引起的交调失真 在现场监控应用中,用户可能有许多各种信号,如视频图像、音频、数据、以太网、电话或其它用户自定义的信号,每种信号分别用一对光端机来传输,必然价格昂贵,所以为了提高光纤的利用效率,降低成本,必须的各种信号在光端机进行复用,以便在一对或一根光纤上传输。对调频、调幅、调相光端机来讲,传输10/100M以太网信号或多路电话等高速信号是难以做到的,将多路视频或音频信号混合调频、调幅、调相在某一载波上必然会引起各种镜像、交调干扰。所以目前市场上不乏很多着名国外品牌的调频、调幅、调相光端机多路视频、音频、数据同传时经常出现相互干扰的现象,这些不稳定的现象都是模拟调制技术长期以来一直所固有且难以解决的问题和缺点。所以模拟光端机传输信号容量有限,一般不会超过4路信号同传。而数字光端机传输的是数字信号,很容易进行大容量复用并且不会出现相互干扰。
5、 稳定性不同 模拟调制光端机由于采取载波调制方式,载波及光头很容易受环境温度影响。出现传输质量随环境变化而变化的缺点。正因为这种缺点,对一些大型、重要工程来讲,模拟光端机的维护成了很令人头疼的问题,由此也给很多工程承包商或业主带来了很大不满。所以对一些重要的工程选用数字光端机是一种明智的选择。
6、 价格有所不同 由于体系结构不一样,模拟光端机与数字光端机的价格略有不同,一般来说,单路视频、音频、数据数字光端机较单路模拟光端机价格稍高,四路以上视频、音频、数据数字光端机相反比模拟光端机便宜得多,而传输后的视频效果远高于模拟产品。所以,数字光端机的性价比要高于模拟光端机。
好了,以上内容就是飞畅科技关于数字光端机和模拟视频光端机不同点的相关详细介绍,希望能对你有所帮助!飞畅科技,专业做光端机、光纤收发器、工业交换机、协议转换器的厂家,自主研发品牌,欢迎前来了解、交流。咨询热线:0571-8700-7140,400-0505-571。
了解更多请浏览飞畅科技:http://www.futu***.cn